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administração desde então. Sempre presente nos trabalhos, tanto nos aspectos teóricos
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Resumo

Essa dissertação de mestrado apresenta o controle de corpo completo de um manipulador

móvel não-holonômico utilizando controle por realimentação entrada-sáıda e álgebra de

quatérnios duais. O controlador, cuja referência é um quatérnio dual unitário representando

a pose desejada do efetuador, age como um gerador dinâmico de trajetória para o efetuador,

e os sinais de entrada tanto para a base móvel não-holonômica quanto para o braço

manipulador são gerados utilizando a pseudo-inversa da matriz Jacobiana de corpo completo.

Para lidar com as restrições de não-holonomia, o sinal de entrada para a base móvel gerado

pelo controle de corpo completo é devidamente remapeado para garantir factibilidade.

Restrições nos limites das juntas, existentes na plataforma real, são tratadas como restrições

na matriz Jacobiana. A estabilidade de Lyapunov para o para o sistema em malha fechada

é apresentada, utilizando o método direto de Lyapunov e o teorema de Matrosov, e

resultados experimentais em uma plataforma real são realizados para comparar o esquema

proposto com um controlador cinemático tradicional de corpo completo. Os resultados

mostram que, para uma taxa de convergência similar, o controlador não linear é capaz

de gerar movimentos mais suaves, além de possuir menor esforço de controle do que o

controlador linear.

Palavras-chave: Controle não linear, realimentação entrada-sáıda, controle cin-

emático, manipulador móvel não-holonômico, quatérnios duais.
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Abstract

This master thesis presents the whole-body control of a nonholonomic mobile manipulator

using feedback linearization and dual quaternion algebra. The controller, whose reference

is a unit dual quaternion representing the desired end-effector pose, acts as a dynamic

trajectory generator for the end-effector, and input signals for both nonholonomic mobile

base and manipulator arm are generated by using the pseudoinverse of the whole-body

Jacobian matrix. In order to deal with the nonholonomic constraints, the input signal

to the mobile base generated by the whole-body motion control is properly remapped to

ensure feasibility. Joint constraints, which are present in the real platform, are treated by

means of constraints in the Jacobian matrix. The Lyapunov stability for the closed-loop

system is presented, utilizing Lyapunov’s Direct Method and Matrosov’s theorem, and

experimental results on a real platform are performed in order to compare the proposed

scheme to a traditional classic whole-body linear kinematic controller. The results show

that, for similar convergence rate, the nonlinear controller is capable of generating smoother

movements while having lower control effort than the linear controller.

Keywords: Nonlinear control, feedback linearization, kinematic control, nonholonomic

mobile manipulator, dual quaternions.
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1
Introduction

Over the last years, humanoids and mobile manipulators have attracted increasing attention

in academic research, thanks to the versatility offered by such platforms. They can be

used in many daily tasks such as, for example, picking up a cup (Salazar-Sangucho and

Adorno, 2014), interacting with objects in shelves (Dalibard et al., 2013), entertainment

(Ishida, 2004) and personal assistance (Meeussen et al., 2010; Chen et al., 2013). When

interacting with humans, specially in tasks of rehabilitation, it is often undesirable (if

not prejudicial) that the robot present abrupt movements (Alcocer et al., 2012; Lasota

et al., 2014). In order to allow fluid and human-like movements, a strategy of whole-body

motion—i.e., motions that use all available degrees of freedom (DOF)—may be used to

control both humanoids and mobile manipulators.

Although humanoids are the first type of robots that may come to mind when one

thinks about robots for human environments, such robots present extra challenges in the

control. For instance, let us assume a simple task of picking up an object that is out of

the robot’s reach. In addition the proper control focused on performing the desired task,

humanoids also need to perform simultaneously other tasks, such as, for example, balance

and gait control. Another drawback in the usage of humanoids lies in the fact that the

majority of these robots are very expensive.

On the other hand, mobile manipulators combine the dexterity of robotic arms with

the mobility of mobile bases, being a versatile and low cost option to work in human

environments. Another advantage of these platforms is that they do not need balance

control, as the base is naturally in equilibrium. Nevertheless, one of the most common

1



CHAPTER 1. INTRODUCTION 2

mobile bases is the differential mobile base, which presents the challenge of being a first

order nonholonomic system (i.e., it has restrictions in the instantaneous velocities that it

may execute).

Classic approaches to control mobile manipulators consists of controllers whose control

effort is proportional to the error. Therefore, when the error is to large (e.g., the robot

end-effector starts far from its desired pose) the robots presents abrupt movements. In

order to mitigate this problem, this work explores the development of a nonlinear control

technique.

In order to control the end-effector pose (i.e., position and orientation) a suitable

representation should be used. Dual quaternions are one good example, since they are

more compact and computationally efficient than homogeneous transformation matrices

and also do not present representational singularities (Adorno, 2011). In addition, dual

quaternions can be used to represent rigid motions, twists, wrenches, and several geometric

primitives (e.g., Plücker lines, planes, etc.) (Adorno, 2017). Thanks to their strong algebraic

properties, different robots can be modeled using the same systematic procedure (e.g.,

single or cooperative manipulators (Adorno et al., 2010), mobile manipulators (Adorno,

2011), and humanoids (Oliveira and Adorno, 2015; Fonseca and Adorno, 2016)), and the

resultant models can be directly used with standard kinematic controllers without the need

of any intermediate parameterization (Pham et al., 2010; Adorno et al., 2010; Figueredo

et al., 2013). Thanks to those aforementioned advantages, dual quaternion algebra is the

main mathematical tool used in this dissertation for robot modeling and control.

Real platforms often present limitations in the angles that its joints may assume. If

this aspect is not considered during the controller’s design and is not properly treated,

it may potentially leads to instability of the system. Therefore, this work explores some

existent techniques that aim to solve such problem.

1.1 Objective and Contributions

This work has as main objectives the design and implementation of a nonlinear kinematic

controller for the whole-body control of a nonholonomic mobile manipulator. The motiva-

tion behind the usage of a nonlinear control lies in the desire to mitigate the abrupt initial

movement presented by classic approaches of kinematic control (i.e. controllers whose

control effort is proportional to the error), when the initial error is too large.

Partial results of this work, which uses a cascade structure composed of an outer loop

with the nonlinear controller and an inner loop that explicit deals with the nonholonomic

constraints of the mobile base, by using a feedback linearizing control law, were published in

the 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium

(LARS/SBR) (Silva and Adorno, 2016). That paper presented a comparison between the

proposed strategy and the whole-body kinematic control proposed by Salazar-Sangucho
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and Adorno (2014).

The main contribution of this master’s thesis is the development of a whole-body control

strategy for a first order nonholonomic mobile manipulator using feedback linearization and

dual quaternion algebra. Although feedback linearization has already been developed for

pose control using dual quaternion algebra (Wang and Yu, 2013), those techniques combined

have never been adapted and applied to first order nonholonomic mobile manipulators. In

addition, this dissertation has the following novel contributions

� The nonlinear dynamical controller proposed by Wang and Yu (2013) was adapted

to a nonlinear kinematic controller, extending its applicability to robots actuated on

velocity or joint position (e.g. the majority of commercial mobile manipulators);

� Removal of the cascade structure proposed by Salazar-Sangucho and Adorno (2014),

ensuring feasible control inputs to the nonholonomic mobile base by means of a

suitable input mapping (see Section 4.2.3);

� Formal stability proof of the end-effector closed-loop dynamics, using Lyapunov’s

Direct Method and Matrosov’s Theorem (see Section 4.2.4);

� Modification of the Jacobian Clamping (Colome and Torras, 2015), removing its

limitation of permanently blocking a joint and allowing the robot to potentially

regain a lost degree of freedom.

The main contributions of this dissertation were accepted with minor revisions by the

Journal of Intelligent & Robotic Systems (JINT) and the paper is currently under revision.

1.2 Dissertation Outline

The dissertation is structured as follows. Chapter 2 reviews important works on whole-

body control, control of nonholonomic robots, nonlinear control in robotics and strategies

to deal with joints’ constraints. Chapter 3 presents a brief mathematical background

of dual quaternion algebra, which is used for the robot modeling and controller design,

Lyapunov Theory and Matrosov’s Theorem, which is used in the stability proof of the

end-effector closed-loop dynamics. Chapter 4 gives the modeling of the nonholonomic

mobile manipulator and the whole-body control design. Chapter 5 shows the results of

practical experiments, comparing the proposed structure with the classic kinematic control.

Chapter 6 gives the conclusions of this work and proposals of future works.



2
State of the Art

This chapter presents a review of important works regarding whole-body control of

humanoids and mobile manipulators and, also, nonlinear control in robotics. Techniques to

deal with joints’ constraints are also discussed in this chapter. It is divided in four sections:

Section 2.1 presents a review of whole-body control, Section 2.2 reviews some control

techniques of nonholonomic manipulators and Section 2.3 presents some works related

with the use of nonlinear control in robotics. Section 2.4 reviews works with techniques to

deal with joints’ constraints.

2.1 Whole-body Control

Whole-body control is defined as a control technique in which all available degrees of

freedom (DOF) of a robot are used at once to perform a given task. Usually, in this type

of control, the goal is defined in the task space (e.g., a desired pose for the end-effector)

and finding suitable joint positions to achieve it, is the task of the controller.

Nishiwaki et al. (2005) proposed a control strategy for the whole-body motion of a

humanoid robot for the task of opening a crank while walking continuously. The strategy

consists in first determining a desired hand position and, afterwards, deciding torso position

and posture according to the position of the hand and the feet. Then, using the calculated

torso and hand positions, the inverse kinematic of the arm is used to find the appropriate

joint angles. Also, null space control was used to avoid joint constraints, by making the

joint which is nearest to its limit farther from the limitation. The proposed control scheme

4
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was tested on the humanoid robot H7 (see Fig. 2.1a).

Sentis and Khatib (2006) proposed a whole-body control framework based on priori-

tization of tasks consisting of three hierarchical levels, where constraint-handling tasks

have highest priority, followed by operational tasks, and finally posture-optimizing tasks.

The tasks with lower priority are projected into the null space of the higher priority tasks.

Therefore, this strategy ensures that the constraints will never be violated. The framework

was tested only in simulation.

Gienger et al. (2006) presented a control algorithm that allows “displacement intervals”

in task space (i.e., valid regions around a given task variable), which are exploited to satisfy

one or several cost functions, similar to how redundant control techniques exploit the null

space. The strategy was demonstrated through simulation and was also implemented on

the humanoid robot Asimo (see Fig. 2.1b).

Nagasaka et al. (2010) proposed a whole-body cooperative force control strategy, known

as Generalized Inverse Dynamics, for a mobile manipulator that can achieve different

control objectives and interact with both humans and objects while performing whole-body

motions. The authors also proposed a hardware configuration, called Idealized Joint

Unit, to ensure accurate response to the required torque according to virtual impedance

properties (inertia and viscosity). The strategy was tested on a two-armed and two-wheeled

robot with 21 DOF.

Pham et al. (2010) proposed a strategy to regulate the end-effector pose of manipulator

robots, which is represented by a unit dual quaternion, and uses the pseudoinverse of

the robot Jacobian to generate the velocity inputs for the robot joints. By representing

position and orientation in a single element, the design of the controller was simplified.

The proposed scheme was tested on a six-link manipulator showing the efficiency of the

method.

Dietrich et al. (2011) proposed a whole-body impedance-based controller to the DLR’s

mobile manipulator Justin (see Fig. 2.1c), which has two arms and a holonomic base. A

synchronized behavior was achieved through the use of one single Jacobian for the whole

system, except for the hands, and the approach was tested on the real platform.

Adorno (2011) presented an extension of the cooperative dual task-space (CDTS)

proposed in Adorno et al. (2010) and evaluated the resultant control strategy through the

simulation of a two-arm mobile manipulator for the task of pouring water. The whole-body

model developed by Adorno was used in Salazar-Sangucho and Adorno (2014) to implement

the whole-body control of a first order nonholonomic mobile manipulator in the task of

picking and delivering a bottle of water. Park and Lee (2013) proposed a whole-body

motion balance for humanoids robots based on the CDTS and evaluated the strategy by

means of simulations.

Figueredo et al. (2013) proposed a H∞ robust controller using dual quaternion algebra

to regulate the end-effector pose of manipulator robots in the presence of disturbances,
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(a) (b) (c)

Figure 2.1: Robots used in works on whole-body control: (a) H7 (Nishiwaki et al., 2005);
(b) ASIMO (courtesy of Honda); (c) Justin (courtesy of DLR).

whereas ensuring convergence. A novel error metric in dual quaternion algebra, which is

invariant with respect to coordinate changes, was introduced. Simulations highlighted the

effectiveness of the proposed strategy in therms of its robustness and performance.

Marinho et al. (2015) proposed an optimal controller to efficiently balance the end-

effector error and its task-space velocity, using dual quaternion algebra. Departing from the

invariant error definition (Figueredo et al., 2013), they derived a perturbed time-varying

linear system and then proposed an optimal criterion strategy to control the error in

relation to perturbations, caused by a time-varying trajectory. The strategy was tested

through simulation and compared with techniques using a proportional gain controller

with and without feed-forward, demonstrating the efficiency of the former in following the

trajectory.

Mello et al. (2016) presented a cascade control strategy to track a desired trajectory

of the end-effector, in the presence of uncertainties, of a aerial manipulator, which is

composed of a robotic arm serially coupled to a quadrotor unmanned aerial vehicle (UAV).

The control structure has the inner loop composed of a partial feedback linearization

controller obtained from Lie derivative and the outer loop is given by a kinematic controller

designed through the linear H∞ controller using LMIs. The whole-body kinematic model

of the aerial manipulator is obtained using dual quaternion algebra.

Kussaba et al. (2017) proposed a hybrid control strategy based on unit dual quaternions

to design a switching control law with hysteresis in such a way that the global asymptotic

stability of the closed-loop system is guaranteed and such that the global attractivity

of the stabilization pose does not exhibit chattering, a problem that is present in all

discontinuous-based feedback controllers.
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2.2 Control of Nonholonomic Mobile Manipulators

Robotic systems are invariably subjected to a variety of constraints. A wheeled robot has,

for instance, the constraint of rolling without slipping. Such constraints, called Pfaffian

constraints, can be written in the form (LaValle, 2006)

φ(q, q̇, t) = 0, (2.1)

where q is the robot’s configuration. If the constraints in the form of (2.1) can be

integrated in such way that they can be written in the form of φ(q, t) = 0, they are

then called holonomic constraint. On the other hand, constraints in the form of (2.1)

that cannot be integrated are known as first-order nonholonomic constraints. Physically,

first-order nonholonomic constraints imply that the robot is unable to achieve some

instantaneous velocities. For instance, a wheeled robot, as a conventional car, is incapable

of instantaneously moving in a direction normal to its wheels. It is worth noticing that

this limitations in the instantaneous velocities do not prevent the robot to achieve any

arbitrary pose, they simply imply that a specific set of maneuvers will be required (e.g.,

parallel parking maneuvers).

Li and Liu (2004) proposed the modeling and control of a mobile manipulator composed

of a three-wheeled mobile platform and a four-DOF manipulator. The nonholonomic

constraints of the mobile base were taken into account by means of a constraint Lagrangian

formulation. To allow the end-effector to follow a given trajectory, the authors designed a

model-based controller, which was proved to be asymptotically stable through Lyapunov

theory. The model proposed in that paper was then used by Li and Liu (2005) and Liu

and Li (2006), where controllers based on fuzzy logic were developed. In both works a

fuzzy self-motion planner was used in conjunct with a robust adaptive controller and a

robust adaptive neural-network controller, respectively.

De Luca et al. (2006) presented an extension of redundancy resolution techniques,

originally proposed for fixed-base robotic manipulators, to mobile manipulators. The

authors explicitly used the admissible mobile base velocities in the kinematic model,

instead of working with its nonholonomic constraints. As for control strategy, two control

schemes were implemented. The first one is based on Projected Gradients, which consists

in the usage of the pseudoinverse of the Jacobian matrix and a null space projector, used

to project a secondary task (e.g., joint constraints) onto the null space of the primary

task. The second control scheme is based on the Reduced Gradient (De Luca and Oriolo,

1991), which performs an optimization of the objective function by directly working in the

reduced space of velocity inputs that satisfy the task. Simulations performed revealed that

the Reduced Gradient has superior optimization performance over the Projected Gradient

method.
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Zhang et al. (2012) presented a control scheme in which a teleoperator provided the

mobile manipulator’s end-effector with information of desired pose. To find the solution for

the redundant system, the authors suggested the modeling as a multi-objective optimization

problem. As restrictions for the optimization problem, nonholonomic constraints, joint

limit avoidance, singularity removal, maximum manipulability, obstacle avoidance, among

others, were used. The developed controller is based on the pseudo-inversion of the robot’s

Jacobian and its null space projector. The effectiveness of the strategy was tested through

simulation, using a mobile manipulator.

Jia et al. (2014) proposed a whole-body control strategy for a mobile manipulator

composed of a mobile base and a robotic arm. The proposed scheme is composed of

three levels. In the first one, a desired motion is given to the end-effector by a human

operator using a spaceball. Data is sampled from the given motion and used as desired

velocity for the end-effector. Finally, this desired trajectory for the end-effector is used

to find a desired trajectory for the mobile base and for the manipulator. In the second

level, a coordination planner receives information from the system and actively generates

instantaneous input signals based on the original motion plan. The third and last level is

a coordination controller that computes the joint’s velocities for both the mobile base and

the manipulator to achieve the instantaneous output. It is worth noticing that although

the coordination controller concatenates both control signals, the mobile base and the

manipulator are controlled separately and each one has its own desired trajectory (obtained

in the first level). For mobile base control, the nonholonomic constraints are dealt with

through a modification of the kinematic model in order to explicit entail the admissible

velocities with respect to such constraints.

Salazar-Sangucho and Adorno (2014) presented a control scheme for a mobile manipula-

tor using a cascade structure, in which the outermost level consists in a controller based on

the pseudoinverse of the Jacobian matrix and the innermost loop explicitly deals with the

nonholonomic constraints of the base, by means of a input-output feedback linearization.

The strategy was tested in a real platform for the task of picking up and delivering a bottle

of water.

Quiroz-Omana and Adorno (2016), inspired by the control structure presented by

Salazar-Sangucho and Adorno (2014), proposed a control scheme using a cascade structure,

in which the outermost loop was replaced by the parsimonious kinematic controller proposed

by Goncalves et al. (2016), which deals with the robot motions using linear programming.

Experiments on a real platform showed that this structure allows the robot to use less

joints per iteration, besides allowing the integration of several constraints, such as, for

example, joints’ limits and low-level obstacle collision avoidance.



CHAPTER 2. STATE OF THE ART 9

2.3 Nonlinear Control in Robotics

Among the several existent nonlinear control strategies, one of the simplest and most used

technique is the one called Feedback Linearization. This strategy consists in obtaining

the error dynamics and proposing a feedback linearizing control law that will cancel the

system’s nonlinearities and lead it to a virtual control law. The virtual control law is then

designed in order to impose the desired dynamics into the system. The general framework

of a feedback linearizing control law is given by

u = feedback linearization + virtual control law.

Gilbert and Ha (1984) proposed a systematic approach for feedback system design

based on a general error expression. They relied on the inverse kinematics to find the

desired joint angles qd(t) once a desired end-effector pose xd(t) is given. Starting from the

nominal model of the manipulator dynamics and using as error

q̃ = qd − q,

where q are the current joint angles, the authors obtained a feedback linearizing control

law that compensates the nonlinearities of the system and leads the error dynamics to a

virtual control law. As virtual control law, the authors suggested the use of a simple PID

controller.

Spong and Vidyasagar (1985) presented a control scheme composed of an approximate

feedback control law followed by a linear compensator. The feedback linearizing controller

was obtained from the error dynamics starting from the nominal model of the manipulator

dynamics, while the linear compensator was designed based on the stable factorization

approach (Vidyasagar, 1985) to achieve optimal tracking and disturbance rejection.

Wen et al. (1991) studied the attitude control problem of a single free-floating rigid

body. The authors discussed a general controller structure in the form of

u = proportional and derivative feedback + feedforward compensation, (2.2)

in which u is the control input, the proportional and derivative feedback term is used to

impose the desired dynamics and the feedforward compensation is used to enhance the

tracker performance. In the proposed controller, the proportional and derivative feedback

terms are related to the relative attitude and to the angular velocity error, respectively.

As feedforward compensation term, the authors discussed three possibilities: a model

independent control law, in which no compensation is used; a compensator based on the

full dynamic model with known parameters; and a compensation term with parameter

adaptation.



CHAPTER 2. STATE OF THE ART 10

Following the work of Wen et al. (1991), Wang and Yu (2013) developed a pose controller

for a single free-floating rigid body based on feedback linearization and dual quaternion

algebra. The authors developed their control law in the form of (2.2), having terms related

to the logarithm of the dual quaternion error and to the twist error as proportional and

derivative feedback terms, respectively. For the feedforward compensation, the authors

relied on the full dynamic model with known parameters. The results of their work were

presented through simulation by using the dynamic model of a “flying brick.”

de Almeida and Raffo (2015) proposed a cascade scheme with three input-output

feedback linearization blocks to control a Tilt-rotor UAV carrying a suspended load. The

two innermost levels control the aircraft’s altitude and attitude. The third level performs

path tracking while reduces the load’s swing. The scheme was tested through simulation

and compared with a simpler technique that uses the same controllers designed for the

first and second level and replaces the third level by PID controllers, which considers the

load as a disturbance. The simulations showed that the proposed scheme reduced the load

swing, with an improvement of 140%, at the cost of a worsening in 20% in the tracking

error of the Tilt-rotor.

Rego et al. (2016) presented a leader-follower formation control problem, in which a Tilt-

rotor UAV performed path tracking while being followed by other Tilt-rotors UAVs. The

control scheme consists of a hierarchical structure composed of a formation backstepping

controller based on the Cooperative Dual Task-Space (CDTS) proposed by Adorno et al.

(2010) and one linear state-feedback D-stable H∞ controller for each Tilt-rotor UAV,

based on its linearized dynamic equations, for individual reference tracking. The proposed

structure was compared through simulation with a classic technique that uses a controller

based on task-space inverse dynamics for individual reference tracking, instead of the

backstepping controller. The results showed that while both schemes have almost the same

behavior in a disturbance-free scenario, when disturbances where added to the acceleration

signals generated by the formation controller, only the backstepping controller was able to

reject them.

Silva and Adorno (2016) presented an adaptation of the control strategy proposed by

Wang and Yu (2013) that eliminated the need of obtaining the robot dynamics, allowing

the application of the resultant technique to velocity-actuated robots. Therefore, it was

possible to integrate the pose controller developed by Wang and Yu (2013) with the

modeling from Adorno (2011) and whole-body control strategy presented by Adorno

(2011); Salazar-Sangucho and Adorno (2014); Salazar-Sangucho (2014). The resulting

controller uses a cascade scheme with two control loops. In the outer loop there is a

nonlinear controller based on dual-quaternion feedback linearization—whose reference is a

unit dual quaternion representing the desired end-effector pose—that acts as a dynamic

trajectory generator and generates input signals for both nonholonomic mobile base and

manipulator arm; the inner loop uses the input signals generated by the outer-loop as
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reference for an input-output linearizing controller that explicitly takes into account the

nonholonomic constraints of the mobile base. The proposed strategy eliminated the abrupt

initial movement due to large errors that is characteristic of kinematic controllers based on

the pseudoinverse of the robot Jacobian. The proposed whole-body nonlinear controller

was implemented on a mobile manipulator composed of a five-DOF robotic arm attached

to a three-DOF differential mobile base. No formal proof of stability was presented in this

work.

2.4 Joints’ Constraints

Liégeois (1977) presented a control strategy using gradient projection in order to solve a

secondary task in the null space of the primary. He proposed the use of the quadratic form

H (q) = 1
n

n∑
i=1

(
qi − q̄
q̄ − qimax

)2

,

where n is the number of joints of the robot and q̄ = (qimax + qimin
) /2, with qimax and qimin

being the maximum and the minimum value allowed for the joint i, respectively, to make

a manipulator draw a circle, while minimizing the deviation of the joints from its mean

positions. It is worth noticing that from the value of H (q) it is impossible to determine if

a joint has reached its limit.

Following the work of Liégeois (1977), Zghal et al. (1990) proposed a kinematic

optimization scheme for the control of manipulators with multiples degrees of redundancy,

in which the gradient used was given by

H (q) =
n∑
i=1

qimax − qimin

(qimax − qi) (qi − qimin
) .

H (q) tends to infinite when approaching a joint limit and has a minimum value at the

joint’s mean position, therefore pushing the joints to the center of their ranges.

Chan and Dubey (1995) proposed the use of a weighting matrix to penalize joints

approaching their limits. They compared their technique with strategies using gradient

projection, showing that the former reduces robot self-motion while ensuring joint limit

avoidance, which, on the other hand, cannot be guaranteed by the later, as joint constraints

are projected into the null space of the main task.

Colome and Torras (2015) presented a strategy, known as Jacobian Clamping, to deal

with joints limits that is similar to the one proposed by Chan and Dubey (1995), but
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defining the weighting matrix as a diagonal matrix H , whose elements are given by

hi =

0 , if qi > qimax or qi < qimin
,

1 , otherwise.
(2.3)

This way, any joint that violate its limit is blocked, but the joints are not pushed from

their maximum (or minimum) values. If one joint is blocked, the robot loses one degree of

freedom, but may continue to converge to the desired pose using the other available DOFs.

2.5 Chapter Conclusions

This chapter presented a review of whole-body control, control of nonholonomic manipula-

tors, nonlinear control in robotics and strategies to deal with joints’ constraints. Although

the use of feedback linearization and dual quaternion algebra for pose control was already

proposed in the work of Wang and Yu (2013), their goal was to control a single free-floating

rigid body and they relied in the full dynamical model of it, having torques and forces as

control inputs. The modification of the control structure proposed in this master thesis

removes the necessity of the dynamical model of the robot, allowing the implementation

of the proposed nonlinear controller in robots actuated in velocity or joint position (e.g.

the majority of commercial mobile manipulators).

So far the literature has not presented works applying nonlinear control using dual

quaternion algebra to first-order nonholonomic mobile manipulators. Besides, to deal

with nonholonomic constraints often one relies in either including such constraints directly

in the model (or in the programming of the optimization problem) or using a cascade

structure. The remapping of the unfeasible control inputs into feasible ones is one of the

contributions of this work.

The Jacobian Clamping as proposed by Colome and Torras (2015), although guaran-

teeing that the joints’ limits will be respected and being simple to implement, works in

such a way that, once a joint is blocked, it remains blocked forever. A modification in the

definition of the matrix H proposed in this dissertation allows the joints to be potentially

unblocked during the execution of the movements. This way, the robot may regain the lost

degree of freedom, extending the convergence capability of the system, which was fairly

limited by the original strategy.

Adapting and combining the work of Wang and Yu (2013) with the whole-body control

of Salazar-Sangucho and Adorno (2014) and using the proposed modification of the Jacobian

Clamping, it is possible to achieve our goals of obtaining a kinematic whole-body nonlinear

control, which allows a mobile manipulator to present smooth and fluid movements, while

respecting its joints’ constraints.



3
Mathematical Background

This chapter provides a brief revision of the principal concepts needed to understand this

work. Section 3.1 gives an introduction to dual quaternion algebra, its operations and

applications in robotics. Section 3.2 provides a summary of basic concepts of Lyapunov’s

Theory and the Matrosov’s Theorem (Matrosov, 1962).

3.1 Dual Quaternion Algebra

This master thesis relies on dual quaternion algebra to obtain both the robot kinematics and

the corresponding kinematic controllers, and thus this chapter presents some introductory

concepts on dual quaternions. For a more complete account on the subject and its

application to robotics, please refer to Adorno (2011); Selig (2005).

3.1.1 Quaternions

Quaternions were proposed by Hamilton in the 19th century (Hamilton, 1844, apud Adorno)

with the purpose of extending the algebra of complex numbers, and they are elements of

the set given by

H , {h1 + ı̂h2 + ̂h3 + k̂h4 : h1, h2, h3, h4 ∈ R and ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1}. (3.1)

Addition and multiplication of quaternions are analogous to their counterparts of real

and complex numbers; one must only respect the properties of imaginary units ı̂, ̂, k̂ given

13
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in (3.1). Quaternions whose real part (i.e., the element not multiplied by any imaginary

unit) is equal to zero are called pure quaternions.

Pure quaternions are used to represent positions (px, py, pz) in the three-dimensional

space by means of position quaternions

p = ı̂px + ̂py + k̂pz, (3.2)

as shown in Fig. 3.1.

ı̂

̂

k̂

px

pk

pj

Figure 3.1: Three-dimensional position (px, py, pz) being represented by the pure quaternion

p = ı̂px + ̂py + k̂pz.

Definition 3.1 (Adorno (2017)). The norm of a quaternion h = hr + ı̂hx + ̂hy + k̂hz is

defined as

‖h‖ =
√
hh∗ =

√
h∗h,

where h∗ = hr − ı̂hx − ̂hy − k̂hz is the conjugate of h.

Quaternions whose norm is equal to one are called unit quaternions and are used to

represent rotations by means of rotation quaternions

r = cos
(
φ

2

)
+ n sin

(
φ

2

)
, (3.3)

where φ is the rotation angle around the rotation axis n = ı̂nx + ̂ny + k̂nz, ‖n‖ = 1,

(Selig, 2005), as illustrated in Fig. 3.2.

3.1.2 Dual Quaternions

Clifford extended the algebra of quaternions in 1873 giving rise to dual quaternions (Selig,

2005), which are elements of the set

H , {hP + εhD : hP ,hD ∈ H, ε 6= 0, ε2 = 0}. (3.4)

Addition and multiplication of dual quaternions are analogous to their counterparts of

real and complex numbers; one must only respect the properties of imaginary units ı̂, ̂, k̂

and dual unit ε given in (3.1) and (3.4), respectively.



CHAPTER 3. MATHEMATICAL BACKGROUND 15

ı̂

̂

k̂

n
φ

ı̂

̂

k̂

Figure 3.2: Rotation of an angle φ around a rotation axis n being represented by the
rotation quaternion r = cos (φ/2) + n sin (φ/2).

Definition 3.2 (Adorno (2017)). Given a dual quaternion h = hP + εhD, the operators

P (h) , hP ,

D (h) , hD,
(3.5)

provide the primary part and dual part of h, respectively.

Definition 3.3 (Adorno (2011)). The norm of a dual quaternion x = xP + εxD is given

by

‖x‖ =
√
xx∗ =

√
x∗x, (3.6)

where x∗ = x∗P + εx∗D. When applied to quaternions, this norm is equivalent to the

Euclidean norm.

Dual quaternions whose norm is equal to one are called unit dual quaternions.

3.1.2.1 Unit Dual Quaternions

A subset of dual quaternions, the unit dual quaternions, is used to represent poses (position

and orientation) in the three-dimensional space and form the group Spin(3)nR3 (Selig,

2005). Unit dual quaternions can always be written as (Selig, 2005)

x = r + ε
1
2pr, (3.7)

where p and r are given by (3.2) and (3.3), respectively. Alternatively, (3.7) can be

rewritten as

x = r + ε
1
2rp

b, (3.8)
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where pb = Ad (r∗)p is the position with respect to the body frame,1 and Ad (r∗)p , r∗pr

with r∗ = cos (φ/2)− n sin (φ/2), such that rr∗ = r∗r = 1.

Unit dual quaternions as given by (3.7) or (3.8) can be used to represent a sequence

of rigid transformations, wich is done by a sequence of dual quaternion multiplications.

Fig. 3.3 shows a sequence of rigid transformations represented by unit dual quaternions.

ı̂

̂

k̂

ı̂

̂

k̂x0
01

ı̂

̂

k̂

x1
12

x0
02 = x0

01x
1
12F0

F1

F2

Figure 3.3: Sequence of rigid transformations represented by unit dual quaternions.

The time derivative of x is given by (Han et al., 2008)

ẋ = 1
2ξx, (3.9)

where ξ = ω + ε (ṗ+ p× ω) is the twist expressed in the inertial frame, with p given

by (3.2) and ω = ı̂ωx + ̂ωy + k̂ωz is the angular velocity expressed in the inertial frame.

Furthermore,

p× ω ,
pω − ωp

2 (3.10)

is the cross-product between pure quaternions, which is analogous to the cross product

between vectors in R3 and can be verified by direct calculation (Adorno, 2017). In addition,

the dot product between two pure quaternions p and q is given by

〈p, q〉 , −(pq + qp)
2 (3.11)

and can also be verified by direct calculation (Adorno, 2017).

Alternatively to (3.9),

ẋ = 1
2xξ

b (3.12)

with ξb = ωb + ε
(
ṗb + ωb × pb

)
being the twist expressed in the body frame (Adorno,

2017).

1The superscript indicates in which frame the quaternion or dual quaternion is represented. For
instance, xb represents a pose given with respect to the body frame. If no superscript is used, the global
inertial frame is assumed.
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Definition 3.4 (Han et al. (2008)). Given a dual quaternion x as in (3.7), its logarithm

is given by

logx = φn

2 + ε
p

2 , (3.13)

with inverse mapping given by x = exp (logx) (Adorno, 2011).

Definition 3.5 (Adorno (2017)). The operator vec8 : H 7→ R8 gives a bijective mapping

between dual quaternions and an eight-dimensional vector space. More specifically, given

x ∈ H such that x = x1 + ı̂x2 + ̂x3 + k̂x4 + ε
(
x5 + ı̂x6 + ̂x7 + k̂x8

)
, then

vec8 x =
[
x1 x2 x3 x4 x5 x6 x7 x8

]T
. (3.14)

Definition 3.6. The operator vec8 : R8 7→ H performs the inverse mapping given by

(3.14). More specifically, given x ∈ R8 such that x =
[
x1 x2 x3 x4 x5 x6 x7 x8

]T
,

then

vec8x = x1 + ı̂x2 + ̂x3 + k̂x4 + ε
(
x5 + ı̂x6 + ̂x7 + k̂x8

)
. (3.15)

The vec8 operator, together with the Hamilton operators
+
H (·) and

−
H (·), are very

useful to perform algebraic manipulations. More specifically, given x,y ∈ H the Hamilton

operators satisfy (Adorno, 2011)

vec8
(
xy
)

=
+
H (x) vec8 y =

−
H
(
y
)

vec8 x,

where

+
H (h)=


+
H4 (P (h)) 04
+
H4 (D (h))

+
H4 (P (h))

 , −
H (h) =


−
H4 (P (h)) 04
−
H4 (D (h))

−
H4 (P (h))

 , (3.16)

with

+
H4 (h) =


h1 −h2 −h3 −h4

h2 h1 −h4 h3

h3 h4 h1 −h2

h4 −h3 h2 h1

 ,
−
H4 (h) =


h1 −h2 −h3 −h4

h2 h1 h4 −h3

h3 −h4 h1 h2

h4 h3 −h2 h1

 .

3.2 Lyapunov’s Theory

This work relies on Lyapunov’s Stability and Matrosov’s Theorem (Matrosov, 1962) to

develop the stability proof presented in Section 4.2.4. Therefore, some basic concepts of

those theories are presented in this section.
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3.2.1 Equilibrium Points

If the system trajectory (i.e., the curve in state space corresponding to the system’s

solution) corresponds to a single point, this point is known as equilibrium point.

Definition 3.7 (Slotine and Li (1991)). A state x′ is an equilibrium state (or equilibrium

point) of the system if once x (t) is equal to x′, it remains equal to x′ for all future time.

Mathematically, this means that x′ satisfies

f (x′) = 0,

where ẋ = f (x) .

3.2.2 Lyapunov’s Stability

Lyapunov’s concept of stability and asymptotic stability are given by the following defini-

tions.

Definition 3.8 (Slotine and Li (1991)). The equilibrium point x = 0 is said to be stable

if, for any R > 0, there exists r > 0, such that if ‖x (0)‖ < r, then ‖x (t)‖ < R for all

t ≥ 0. Otherwise, the equilibrium point is unstable.

In other words, if the system’s trajectory starts sufficiently close to an equilibrium

point and it can be kept arbitrarily close to it, then this equilibrium point is called stable.

Such point is also known as marginally stable.

Definition 3.9 (Slotine and Li (1991)). An equilibrium point x = 0 is asymptotically

stable if it is stable, and if in addition there exist some r > 0 such that ‖x (t)‖ < r implies

that x (t)→ 0 as t→∞.

That is, if the equilibrium point is asymptotically stable, states starting close to it will

converge to this equilibrium point as t→∞.

The concepts of Lyapunov’s stability and asymptotic stability are illustrated in Fig. 3.4.

Figure 3.4: Lyapunov’s concepts of stability (Slotine and Li, 1991).
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3.2.2.1 Lyapunov’s Direct Method

Lyapunov’s Direct Method consists in finding a function of the states of the system and

analyzing its time derivative to determine the stability of the equilibrium point at the

origin. The method is stated in the Definition 3.10.

Definition 3.10 (Slotine and Li (1991)). Given a function V (x) of the states of the

system, such as

� V (x) is differentiable

� V (x) is positive definite

� V (x)→∞ as ‖x‖ → ∞

if V̇ (x) ≤ 0, then the equilibrium at the origin is globally stable. If V̇ (x) < 0, then the

equilibrium at the origin is globally asymptotically stable.

The idea behind the method is that V (x) is a “energy-like” function of the dynamic

system. Therefore, by analyzing its time derivative it is possible to infer the system

behavior.

3.2.3 Matrosov’s Theorem

Originally proposed by Matrosov (1962), a simplified version of Matrosov’s Theorem

was presented by Astolfi and Praly (2011) and states that if V̇ ≤ 0 and there exist two

differentiable functions W1,W2 : Rn → R, two continuous and positive semi-definite

functions N1, N2 : Rn → [0,∞), a continuous function ψ : R→ R satisfying ψ (0) = 0,

and a positive definite function ω : Rn → R such that

Ẇ1 ≤ −N1,

Ẇ2 ≤ −N2 + ψ (N1) ,

ω ≤ N1 +N2,

then the origin is an equilibrium point globally asymptotically stable and all bounded

trajectories converge to it. Matrosov’s theorem is usually used in its simplified version

(Astolfi and Praly, 2011) by letting W1 , V . In addition, choosing N1 , 0 (which is

clearly differentiable and positive semi-definite), then it is only necessary to choose the

appropriate functions W2 and ω such that

Ẇ2 ≤ −ω (3.17)

inside the set
{
V̇ = 0

}
.
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The intuition behind Matrosov’s Theorem is that, as the function Ẇ2 that is related to

the system’s states is upper bounded by the negative definite function −ω,2 lim
t→∞

Ẇ2 = 0
independently of its momentarily behavior in the past few instants. Fig 3.5 illustrate this

idea.

time
v
a
lu
e

−ω Ẇ2

Figure 3.5: Intuition behind the Matrosov’s Theorem. As the function Ẇ2 (solid blue curve)
is upper bounded by a definite negative function −ω (red dot-dashed curve), lim

t→∞
Ẇ2 = 0.

3.3 Chapter Conclusions

This chapter reviewed some fundamental mathematical concepts to this work, such as dual

quaternion algebra, Lyapunov Stability and Matrosov’s Theorem. Section 3.1 presented the

definitions, operations, properties and applications of dual quaternions in the representation

of rigid transformations. Section 3.2 reviewed the concepts of equilibrium point, Lyapunov’s

stability and asymptotic stability and presented the Matrosov’s Theorem.

2Remember that, by definition, ω is positive definite.



4
Whole-body Modeling and Control

This chapter presents the whole-body kinematic modeling of the mobile manipulator and

the nonlinear control law proposed in this work. Section 4.1 shows how the whole-body

kinematic model is obtained using dual quaternion algebra. Section 4.2 presents the design

of the nonlinear control and the stability for the end-effector closed-loop dynamics. Section

4.3 reviews the classic kinematic control, which will be used as base of comparison to

evaluate the proposed control scheme.

4.1 Whole-body kinematics of Mobile Manipulators

This section briefly presents the whole-body kinematics of the mobile manipulator used

in this work (see Fig 4.1), starting from the robot kinematics of each subsystem (i.e. the

robot manipulator and the mobile base) to the whole-body model that is used in the final

controller. For more details, please refer to (Adorno, 2011).

Furthermore, it is used the mobile base iRobot Create that has three DOF but only two

actuations in a differential drive configuration, which results in a first-order nonholonomic

system.

21
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F

Fh

Fm

xh

xm

xwb

Figure 4.1: Mobile manipulator composed of a nonholonomic mobile base serially attached
to a 5-DOF manipulator arm.

4.1.1 Manipulator Kinematics

The forward kinematics of any robot can be represented by a suitable mapping f : Rn →
Spin(3)nR3 such that

x = f (q) , (4.1)

where q ∈ Rn is the vector of the robot configuration vector and x ∈ Spin(3)nR3 is the

end-effector pose (Adorno, 2011).

This way, given a mobile manipulator composed of a mobile base serially attached to a

five-DOF manipulator robot, as shown in Fig. 4.1, the forward kinematics of the robot

manipulator is given by

xm = f
m

(qm) , (4.2)

where qm =
[
θ1 · · · θ5

]T
is the vector of manipulator joints and xm is the pose of the

end-effector with respect to the manipulator base. The corresponding differential forward

kinematics is

vec8 ẋm = Jmq̇m, (4.3)

where vec8 (·) is given by (3.14) and Jm ∈ R8×5 is the manipulator Jacobian matrix that

is obtained by using dual quaternion algebra (Adorno, 2011).
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4.1.2 Mobile Base Kinematics

When used to represent the forward kinematics of a mobile base, the dual quaternion xh

that represents its pose is a function of the Cartesian coordinates (x, y) and the angle φ of

the base (Adorno, 2011). Therefore,

xh = rh + 1
2εphrh, (4.4)

with ph = ı̂x+ ̂y and rh = cos (φ/2) + k̂ sin (φ/2) .

The forward differential kinematics of the mobile base, without considering the non-

holonomic constraints, is given by

vec8 ẋh = Jhq̇h, (4.5)

where qh =
[
x y φ

]T
and Jh ∈ R8×3 is the holonomic Jacobian, which is also obtained

algebraically (Adorno, 2011).

In order to deal with the nonholonomic constraint of the mobile base, a change in

the coordinate system is performed (Siciliano et al., 2009), as illustrated in Fig. 4.2. It

is easily noticeable that the point (x, y) in the center of the base cannot instantaneously

move in the y-axis. However, a displaced point (xd, yd) does not have such constraint and

this fact will be used in the end of Section 4.1 to map the control inputs generated by the

whole-body controller into feasible control actions to the mobile base.

x, y

xd, yd

x′

y′

x”

y”

d

φ

Figure 4.2: Differential-drive mobile base. In order to deal with the nonholonomic
constraint, a change in the reference coordinate system is performed. Therefore, the
coordinate system is transferred from the center (x, y) to a displaced point (xd, yd).
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4.1.3 Whole-body Kinematics

The whole-body forward kinematics is given by

xwb = xhxm, (4.6)

where xwb is the end-effector pose with respect to the inertial frame and considers the

coupled kinematic chain. The whole-body differential kinematics is given by (Adorno,

2011)

vec8 ẋwb = Jwbq̇wb, (4.7)

where qwb =
[
qTh qTm

]T
and

Jwb =
[
−
H (xm)Jh

+
H (xh)Jm

]
,

where
+
H (·) and

−
H (·) are given by (3.16).

4.2 Nonlinear Controller Design

The overall scheme for the whole-body pose control of the mobile manipulator is shown in

Fig. 4.3. The reference for the nonlinear controller is a unit dual quaternion representing

the desired end-effector pose. The resultant input signal from the nonlinear controller

is split into two input signals, one for the manipulator and other for the nonholonomic

mobile base. The control signal generated for the latter is properly mapped into feasible

inputs to deal with the nonholonomic constraints of the differential mobile base.

xwb

xd x̃ ẋwb
J†wb

u uh uhf

qm

xm

xh

um

xm = f(qm)

xh = f(qh)

xhxm

Controller

Nonlinear

Mapping
Input

mobile
base

Robotic
arm

qh

system

Figure 4.3: Overall scheme for the whole-body pose control of the nonholonomic mobile
manipulator
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4.2.1 Error dynamics for the end-effector pose

In order to design the nonlinear controller, first a suitable error in unit dual quaternion

space must be defined, such as

x̃ , x∗dxwb

= r̃ + 1
2 r̃p̃

b,
(4.8)

where xwb = rwb + ε (1/2) rwbpbwb and xd = rd + ε (1/2) rdpbd are the current and desired

end-effector pose, respectively, and r̃ = cos
(
θ̃/2

)
+ n sin

(
θ̃/2

)
.

It is important to note that xwb → xd implies x̃ → 1, which in turn implies p̃b → 0
and r̃ → 1. Last, r̃ → 1 implies θ̃ → 0.

The time derivative of x̃ is given by

˙̃x = ẋ∗dxwb + x∗dẋwb

=
(1

2xdξ
b

d

)∗
xwb + x∗d

(1
2xwbξ

b

wb

)
= −1

2ξ
b

d
x∗dxwb + 1

2x
∗
dxwbξ

b

wb

= −1
2ξ

b

d
x̃+ 1

2 x̃ξ
b

wb

= 1
2 x̃

(
ξb
wb
− Ad (x̃∗) ξb

d

)
, (4.9)

where Ad (x̃∗) ξb
d
, x̃∗ξb

d
x̃, with x∗ = x∗P + εx∗D.

Defining

ξ̃
b = ξb

wb
− Ad (x̃∗) ξb

d
, (4.10)

the time derivative of the dual quaternion error is given by

˙̃x = 1
2 x̃ξ̃

b
. (4.11)
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4.2.2 Design of the feedback linearizing control law for the end-

effector pose

The time derivative of ξ̃
b

is given by12

˙̃ξb = ξ̇
b

wb
−
(

˙̃x∗ξb
d
x̃+ x̃∗ξ̇b

d
x̃+ x̃∗ξb

d
˙̃x
)

= ξ̇
b

wb
−
(
−1

2 ξ̃
b
x̃∗ξb

d
x̃+ x̃∗ξ̇b

d
x̃+ 1

2 x̃
∗ξb

d
x̃ξ̃

b
)

= ξ̇
b

wb
−

Ad (x̃∗) ξ̇b
d

+

(
Ad (x̃∗) ξb

d

)
ξ̃
b − ξ̃b

(
Ad (x̃∗) ξb

d

)
2


= ξ̇

b

wb
− Ad (x̃∗) ξ̇b

d
−
(
Ad (x̃∗) ξb

d

)
× ξ̃b, (4.12)

where the cross-product between two pure dual quaternions3 is analogous to the cross-

product (3.10). More specifically, given two pure dual quaternions a and b,

a× b , ab− ba
2 .

Considering (4.12) and defining ξ̇
b

wb
as the feedback linearizing control input; that is,

U , ξ̇
b

wb
, (4.13)

it is possible to impose into the system the desired dynamics. The feedback linearizing

control law proposed in (Wang and Yu, 2013) is adapted to obtain4

U = −kp log x̃− kvξ̃
b + Ad (x̃∗) ξ̇b

d
+
(
Ad (x̃∗) ξb

d

)
× ξ̃b, (4.14)

where kp and kv are real positive gains and log (·) is given by (3.13).

Substituting (4.14) into (4.12), we obtain the closed-loop error dynamics

˙̃ξb = −kp log x̃− kvξ̃
b
. (4.15)

As in this work we are dealing with the first order differential kinematics (4.7), the

1Here it is assumed that the robot is actuated in accelerations. Therefore, ˙̃ξb needs to be calculated.
2It is important to highlight that in the case of a regulation problem—i.e., ẋd (t) = 0—we have

ξb

d
= ξ̇

b

d
= 0, therefore ˙̃ξb = ξ̇

b

wb
.

3A dual quaternion h = hP + εhD is pure if both hP and hD are pure quaternions.
4Since Wang and Yu Wang and Yu (2013) followed a different path to deduce both the body twist and

the error twist, they obtained an equation equivalent to (4.12), but with different nonlinear terms that
must be linearized.
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control input will be given by

uξ , ξ
b

wb
(4.16)

rather than by its time derivative (4.13). Therefore, the current value of ξb
wb

can be

obtained from (4.7) and (3.12) as

ẋwb = vec8 (Jwbq̇wb) = 1
2xwbξ

b

wb
=⇒ uξ = 2x∗wbvec8 (Jwbq̇wb) , (4.17)

where vec8 (·) is given by (3.15).

In order to be implemented in the real system, (4.17) must be discretized. By using the

Euler method, and then using (4.13), (4.14), and (4.17), the (body) twist input is obtained

uξ = TU + 2x∗wbvec8 (Jwbq̇wb) , (4.18)

where T is the integration step.

4.2.3 Whole-body controller

Eq. (4.18) provides the control input for the end-effector, but the actual robot inputs are

the joint velocities; that is, u , q̇wb.
5 This way, using (4.7) we obtain the whole-body

control inputs

u = J †wb vec8

(1
2xwbuξ

)
, (4.19)

where the matrix J †wb , J
T
wb(JwbJTwb + λ2I)−1 is the damped pseudoinverse of Jwb and λ

is the damping factor (Chiaverini, 1997).

The whole-body control input (4.19) is partitioned into two parts, that is,

u =
uh
um

 , (4.20)

where uh =
[
ẋ ẏ φ̇

]T
is the control input for the the mobile base and um =

[
θ̇1 · · · θ̇5

]T
is the control input for the manipulator. It is important to note that, as explained in

Section 4.1.2, the inputs uh may be unfeasible due to the nonholonomic constraint of the

mobile base. This problem is solved in the sequel.

The relation between the time derivative of the mobile base coordinates (x, y, φ) and

5Since the kinematic model (4.7) is used, a single integrator dynamics is assumed.
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its linear velocity v and angular velocity ω is given by
ẋ

ẏ

φ̇

 =


cosφ 0
sinφ 0

0 1


 v

ω

 . (4.21)

The coordinates (xd, yd), illustrated in Fig. 4.2, are given by

xd = x+ d cosφ

yd = y + d sinφ, (4.22)

with time derivative given by

 ẋd

ẏd

 =
 1 0 −d sinφ

0 1 d cos (φ)


︸ ︷︷ ︸

B


ẋ

ẏ

φ̇

 . (4.23)

Replacing (4.21) in (4.23) yields

 ẋd

ẏd

 =
 cos (φ) −d sin (φ)

sin (φ) d cos (φ)


︸ ︷︷ ︸

C

 v

ω

 ,

therefore 6

 v

ω

 = C−1

 ẋd

ẏd



= C−1B


ẋ

ẏ

φ̇

 . (4.24)

The relation between the velocities ωr and ωl of the right and left wheels, respectively,

and the mobile base’s linear and angular velocities is given by (Siciliano et al., 2009)

 ωr

ωl

 = 1
r

 1 b

1 −b


︸ ︷︷ ︸

D

 v

ω

 , (4.25)

where r is the radius of the wheels and b is the half of the distance distance between them.

6It is straightforward to verify that detC = d, thus C−1 always exists ∀d 6= 0.
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Substituting (4.24) in (4.25) yields the feasible control inputs uhf for the mobile base:

uhf ,

 ωr

ωl

 = DC−1B


ẋ

ẏ

φ̇

 . (4.26)

Finally, considering (4.19), (4.20), and (4.26) the feasible whole-body control input

is obtained

uf =
uhf
um

 =
DC−1B 0

0 I


︸ ︷︷ ︸

F

u =⇒ uf = FJ †wb vec8

(1
2xwbuξ

)
. (4.27)

4.2.4 Stability analysis of the end-effector closed-loop dynamics

In this section is proved the stability for the end-effector closed-loop dynamics under

control law (4.14).

Theorem 4.1. Defining

Vξ =
∥∥∥∥P (ξ̃b)∥∥∥∥2

+
∥∥∥∥D (ξ̃b)∥∥∥∥2

= P
(
ξ̃
b
)
P
(
ξ̃
b
)∗

+D
(
ξ̃
b
)
D
(
ξ̃
b
)∗

(4.28)

and

Vlog = k̄p ‖P (log x̃)‖2 + k̄p ‖D (log x̃)‖2

= k̄pP (log x̃)P (log x̃)∗ + k̄pD (log x̃)D (log x̃)∗ , (4.29)

where ‖·‖ is the norm as defined in (3.6), the operators P (·) and D (·) are defined in (3.5),

and k̄p is a positive real number,7 and considering the candidate Lyapunov function8

V = Vξ + Vlog, (4.30)

the origin x̃ = 1 is a stable equilibrium point for the closed-loop error dynamics given by

(4.11) under control law given by (4.14).

7The gain k̄p was introduced in order to provide more freedom into the controller’s design and adjust,
as will be clearer in (4.44).

8It is clear that V ≥ 0 and V = 0 ⇐⇒ ξ̃
b = log x̃ = 0, because the quaternion norm is equivalent to

the Euclidean norm.



CHAPTER 4. WHOLE-BODY MODELING AND CONTROL 30

Proof. The time derivative of V is given by

V̇ = V̇ξ + V̇log, (4.31)

where

V̇log = k̄p
d

dt
P (log x̃)P (log x̃)∗ + k̄pP (log x̃) d

dt
P (log x̃)∗+

k̄p
d

dt
D (log x̃)D (log x̃)∗ + k̄pD (log x̃) d

dt
D (log x̃)∗ ,

which, using the definition of dot product (3.11), yields

V̇log = 2k̄pA1, (4.32)

where

A1 ,

〈
P (log x̃) , d

dt
P (log x̃)

〉
+
〈
D (log x̃) , d

dt
D (log x̃)

〉
(4.33)

and

V̇ξ = d

dt
P
(
ξ̃
b
)
P
(
ξ̃
b
)∗

+ P
(
ξ̃
b
)
d

dt
P
(
ξ̃
b
)∗

+ d

dt
D
(
ξ̃
b
)
D
(
ξ̃
b
)∗

+D
(
ξ̃
b
)
d

dt
D
(
ξ̃
b
)∗
. (4.34)

In addition, since

˙̃ξb = d

dt
P
(
ξ̃
b
)

+ ε
d

dt
D
(
ξ̃
b
)

and the closed-loop error dynamics under feedback linearizing control law (4.14) is given

by (4.15), thus

d

dt
P
(
ξ̃
b
)

+ ε
d

dt
D
(
ξ̃
b
)

= −kp log x̃− kvξ̃
b

= −kpP (log x̃)− εkpD (log x̃)− kv P
(
ξ̃
b
)
− εkv D

(
ξ̃
b
)
.

Therefore,9

d

dt
P
(
ξ̃
b
)

= −kpP (log x̃)− kv P
(
ξ̃
b
)
,

d

dt
D
(
ξ̃
b
)

= −kpD (log x̃)− kv D
(
ξ̃
b
)
.

(4.35)

9Since ξ̃
b

is a pure dual quaternion, d
dt P

(
ξ̃

b
)∗

= − d
dt P

(
ξ̃

b
)

.
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Substituting (4.35) in (4.34) yields10

V̇ξ = −kpP (log x̃)P
(
ξ̃
b
)∗
− kv P

(
ξ̃
b
)
P
(
ξ̃
b
)∗

− kpP
(
ξ̃
b
)
P (log x̃)∗ − kv P

(
ξ̃
b
)
P
(
ξ̃
b
)∗

− kpD (log x̃)D
(
ξ̃
b
)∗
− kv D

(
ξ̃
b
)
D
(
ξ̃
b
)∗

− kpD
(
ξ̃
b
)
D (log x̃)∗ − kv D

(
ξ̃
b
)
D
(
ξ̃
b
)∗
,

which, using (3.11) and (4.28), results in

V̇ξ = −2kpA2 − 2kvVξ, (4.36)

where

A2 ,
〈
P (log x̃) ,P

(
ξ̃
b
)〉

+
〈
D (log x̃) ,D

(
ξ̃
b
)〉

. (4.37)

Replacing (4.36) and (4.32) in (4.31), and choosing kp and k̄p such that

V̇ξ + V̇log = −2kvVξ (4.38)

which implies

−2kpA2 + 2k̄pA1 = 0.

Hence, for A2 6= 0 we obtain

kp = k̄p

(
A1

A2

)
. (4.39)

Finally, from (4.31) and (4.38)

V̇ = −2kvVξ. (4.40)

which is negative semi-definite, because, although Vξ is positive definite, V̇ = 0 when

ξ̃
b = 0 even when V 6= 0, as V = Vlog + Vξ. This way, for kv > 0 the origin x̃ = 1 is a

stable equilibrium point for the closed-loop error dynamics given by (4.11) under control

law given by (4.14).

In order to prove that the equilibrium point is asymptotically stable lets rely on

10Notice that, since both ξ̃
b

and log x̃ are pure dual quaternions, d
dt P

(
ξ̃

b
)∗

= kp P (log x̃)+kv P
(
ξ̃

b
)

=

−kp P (log x̃)∗ − kv P
(
ξ̃

b
)∗

.
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Matrosov’s Theorem (refer to Section 3.2.3). Defining the auxiliary function

W2 =
〈
P
(
ξ̃
b
)
,P (log x̃)

〉
+
〈
D
(
ξ̃
b
)
,D (log x̃)

〉
and taking its time derivative we obtain

Ẇ2 = −1
2

(
d

dt
P
(
ξ̃
b
)
P (log x̃) + P (log x̃) d

dt
P
(
ξ̃
b
))

− 1
2

(
d

dt
D
(
ξ̃
b
)
D (log x̃) +D (log x̃) d

dt
D
(
ξ̃
b
))

. (4.41)

Since ξ̃
b = 0, from (4.15) we have

d

dt

(
ξ̃
b
)

= −kp log x̃,

therefore

d

dt
P
(
ξ̃
b
)

= −kpP (log x̃) = kpP (log x̃)∗ ,

d

dt
D
(
ξ̃
b
)

= −kpD (log x̃) = kpD (log x̃)∗ .
(4.42)

Replacing (4.42) in (4.41), and using (3.6) we have

Ẇ2 = −1
2
(
2kp ‖P (log x̃)‖2 + 2kp ‖D (log x̃)‖2

)
= −kpVlog. (4.43)

Since the value of kp obtained from (4.39) is valid only when A2 6= 0 (i.e., outside the set{
V̇ = 0

}
or, equivalently, when ξ̃

b 6= 0), an appropriate value for kp must also be choose

inside the set
{
V̇ = 0

}
(i.e., when A2 = 0); that is,

kp =

k̄p
(
A1
A2

)
, A2 6= 0,

k̄p , otherwise,
(4.44)

where kp is a positive real number. This way, from (4.43) we have

Ẇ2 = −k̄pVlog. (4.45)

Defining ω ,
(
k̄p/2

)
Vlog, which is positive definite, the condition of (3.17) is satisfied.

Therefore, the equilibrium x̃ = 1 is globally asymptotically stable.
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4.3 Classic linear kinematic control

In order to compare the proposed approach to a classic linear kinematic controller, this

section briefly reviews the classic linear kinematic control based on dual quaternion algebra

introduced by Pham et al. (2010) with the error function introduced by Figueredo et al.

(2013).

In the classic approach, the feasible control inputs are given by11

uf = FN †K vec8 (1− x̃′) , (4.46)

where x̃′ = x∗wbxd is the left invariant error,12 K is a positive definite gain matrix and

F , which is given by (4.27), is the input mapping that guarantees feasible inputs for the

nonholonomic mobile base. The matrix N , H̄8 (xd)C8Jwb is the constrained Jacobian

(Figueredo et al., 2013), where H̄8 (·) is given by (3.16), Jwb is the whole-body Jacobian

matrix given by (4.7), and C8 , diag(
[
1 −1 −1 −1 1 −1 −1 −1

]
).

As can be seen in (4.46), the control effort is proportional to the error. Therefore, when

the error is too large the control signal will also be large, resulting in abrupt movements

in the robot motion. This usually happens when the robot end-effector is far from the

desired pose.

4.4 Modified Jacobian Clamping

Real robots present limits in the maximum values that their joints’ angles may assume.

Although such constraints were not considered during the controller design, a variation

of the Jacobian Clamping presented by Colome and Torras (2015) (see Section 2.4) is

proposed to be used with the nonlinear control. This strategy works by replacing (4.27)

with

uf = FH (JwbH)† vec8

(1
2xwbuξ

)
,

where H is a diagonal matrix whose elements hi are defined as

hi =

0 , if (qi = qimax and sign ui = 1) or (qi = qimin and sign ui = −1) ,

1 , otherwise,
(4.47)

11The actual classic kinematic controller is given by u = J†wbK vec8 (xd − x), but it must adapted
because of two main reasons: the error function is different from the one used in the present paper and
the resulting control input u is not necessarily feasible.

12The error x̃′ differs from the one presented in (4.8), because it is expressed using the dual quaternions
as presented in (3.7), but both expressions are equivalent.
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where qimax and qimin
are the maximum and the minimum joint angles, respectively and ui

is the control input given by (4.27). The modification of (2.3) proposed in (4.47) allows

the joint to be unblocked if the control signal is such that the joint is being pushed away

from its limit. This way, the robot does not have to permanently lose a degree of freedom

if a joint is blocked at a given moment.

4.5 Chapter Conclusions

This chapter presented the whole-body modeling and nonlinear kinematic control of the

mobile manipulator used in this work (Fig. 4.1). Section 4.1 showed the obtention of

the whole-body kinematic model, through a systematic procedure using dual quaternion

algebra. Section 4.2 presented the design of the nonlinear kinematic controller and the

stability for the end-effector closed-loop error dynamics given by (4.11) under control law

given by (4.14), through Lyapunov’s Direct Method and Matrosov’s Theorem. Section 4.3

reviewed the classic kinematic control strategy, which is used as base of evaluation for the

nonlinear control scheme. Section 4.4 presented the proposed modification to the Jacobian

Clamping, that potentially allows the robot’s joint to, once blocked, not remain blocked

during the rest of the experiment, allowing the robot to regain the lost degree of freedom.



5
Experiments and Results

This chapter presents the experiments performed in order to evaluate the proposed control

strategy. Section 5.1 presents the experimental setup utilized in this work and explains

the task to be executed. Section 5.2 shows the obtained results and presents a discussion

about them.

5.1 Experimental Setup

In order to assess the performance of the proposed approach, experiments were done using

a five-DOF manipulator serially coupled to a nonholonomic mobile base, shown in Fig. 4.1.

The implementation was done in Matlab 2016a and C++ with the computational library

DQ Robotics1 for dual quaternion algebra, using the operational system Ubuntu 14.04

LTS 64 bits with Robot Operating System (ROS Indigo). Unless stated otherwise, all

tests were performed with the C++ version of the code. All the real experiments were

performed in a computer equipped with Intel Xeon i7 2.4 GHz octacore processor with 12

GB RAM and all the simulations were performed in a computer Intel Core i7-6500U CPU

@ 2.50GHz Ö 4, 8GB RAM. A Microsoft Kinect� sensor located at the ceiling and two

fiducial markers were used in order to obtain the robot’s end-effector pose and the pose

of the goal. Unless stated otherwise, all simulations had the same stop condition, which

consists of 50 consecutive iterations in which the error norm is smaller than 10−4, whereas

for the all the real experiment, the stop criterion was an (Euclidean) error norm of less

1http://dqrobotics.sourceforge.net/

35
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than 0.04 (i.e., ‖vec8 (1− x̃)‖ < 0.04).

In order to compare the nonlinear controller to the linear controller a test scenario was

designed, as shown in Fig. 5.1, where the goal was to move a small cube to a desired location

and then drop it into a basket. Both controllers received only the desired end-effector pose

and generated the corresponding joints control inputs that regulated the end-effector pose.

Figure 5.1: In the test scenario, the goal consisted of moving a small cube to a desired
location and then dropping it into a basket. Both the robot’s end-effector pose and the
pose of the goal were measured in real time by using a Kinect sensor located at the ceiling
and fiducial markers.

5.2 Results

Three groups of tests were performed: the first one was done in simulation to evaluate the

effects of the gains k̄p and kv on the controller behavior; the second one was done using the

real robot to compare the proposed nonlinear strategy with the classic linear kinematic

controller; and the last one was done both in simulation and using the real platform, in

order to test the proposed technique to deal with joint constraints.

5.2.1 Effects of the Nonlinear Controller Gains

In the first set of tests, k̄p = 0.6 and the values of kv were increased progressively. The

coefficients of the dual quaternion that corresponds to the end-effector pose are shown in

Fig. 5.2, where the reference pose is given by the green dotted line. The gain kv has an



CHAPTER 5. EXPERIMENTS AND RESULTS 37

effect of attenuating the oscillatory behavior generated by the gain k̄p, allowing the robot

to have smoother movements, but at the expense of a slower convergence rate.
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Figure 5.2: Coefficients of the dual quaternion corresponding to the end-effector pose. The
dotted green curve corresponds to the desired pose and in all experiments k̄p = 0.6. The
solid black curve corresponds to kv = 1, the blue dashed curve corresponds to kv = 2, and
the red dot-dashed curve corresponds to kv = 3.

In the second set of tests, the values of k̄p were increased progressively while kv = 2.

The coefficients of the dual quaternion that corresponds to the end-effector pose are

shown in Fig. 5.3, where the reference pose is given by the green dotted line. As the gain

k̄p increases, the end-effector movements become more abrupt and oscillatory but the

end-effector stabilizes faster.

In summary, k̄p affects the convergence rate whereas kv attenuates the oscillatory

behavior.

5.2.2 Comparison of Controllers

The proposed nonlinear strategy and the classic linear kinematic controller were tested on

a real platform (see Fig. 4.1) using the experimental setup described in Section 5.1.

In the experiment (see Fig. 5.1) the desired pose was provided by the Kinect sensor

located at the ceiling and the end-effector pose was continuously estimated by using the

measured value of the mobile base pose, which was obtained by using a fiducial marker on

top of the base, together with the measurements of the manipulator joints angles and the

whole-body kinematic model (4.6). Both robot and basket were placed arbitrarily in the
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Figure 5.3: Coefficients of the dual quaternion corresponding to the end-effector pose. The
dotted green curve corresponds to the desired pose and in all experiments kv = 2. The
solid black curve corresponds to k̄p = 0.6, the blue dashed curve corresponds to k̄p = 1.4,
and the red dot-dashed curve corresponds to k̄p = 2.

workspace and both controllers gains were adjusted by trial and error in order to obtain

similar convergence rates (around 650 iterations). More specifically, for the nonlinear

controller kv = 0.5, k̄p = 0.6 and kp was continuously calculated by using (4.39); for the

classic linear controller K = 0.5I. Some snapshots of the experiment are shown in Fig. 5.4.

Fig. 5.5 shows the time response for all coefficients of the dual quaternion error (4.8).

As expected, for all controllers the first coefficient converged to 1 and the others converged

to zero, which implies that the end-effector pose converged to the desired one for both

controllers. In addition, the nonlinear controller had similar convergence rate to the linear

controller.

Fig. 5.6 presents a comparison between the norm of the end-effector pose error for both

controllers. As expected, both controllers have approximately the same convergence rate

as their parameters were chosen in order to obtain this behavior. However, Fig. 5.7 shows

that the nonlinear controller generates smoother control inputs than the linear controller.

This fact is also confirmed in Table 5.1, which presents the comparison between the control

efforts of both controllers; indeed, the effort of the nonlinear controller is almost half than

the effort of the linear controller.

The spikes present in the error curves of Fig. 5.5 and 5.6 are due to measurement errors.

Indeed, although the pose information provided by Kinect is filtered before using it to

estimate both the end-effector pose and the goal pose, the resultant measurements are
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(a) The robot starts in the same configuration when both
controllers are used.

(b) In this intermediate snapshot the end-effector is closer
to the desired pose when using the nonlinear controller than
when the linear controller is used. This is due to the fact
that the control inputs generated by the linear controller are
proportional to the error, hence they are more abrupt at the
beginning of the experiment, but become smoother as the
end-effector converges to the desired pose.

(c) The end-effector achieves the desired pose for both con-
trollers, but the linear controller has an overshoot at the end
of the trajectory.

Figure 5.4: Snapshots from the experiments, where the executed trajectories from both
controllers are superimposed. The semi-transparent robot (marked with a white circle)
shows the motion generated by the classic controller (4.46) and the regular (not transparent)
robot shows motion generated by the nonlinear controller (4.27).



CHAPTER 5. EXPERIMENTS AND RESULTS 40

0 200 400 600 800
Iterations

0.5

0.6

0.7

0.8

0.9

1
h
1

0 200 400 600 800
Iterations

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

h
2

0 200 400 600 800
Iterations

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

h
3

0 200 400 600 800
Iterations

-0.6

-0.4

-0.2

0

0.2

0.4

h
4

0 200 400 600 800
Iterations

-0.6

-0.4

-0.2

0

0.2

0.4

h
5

0 200 400 600 800
Iterations

-0.8

-0.6

-0.4

-0.2

0

0.2

h
6

0 200 400 600 800
Iterations

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

h
7

0 200 400 600 800
Iterations

-0.2

0

0.2

0.4

0.6

0.8

h
8

Figure 5.5: Coefficients of the dual quaternion error. The red dot-dashed curve corresponds
to the nonlinear controller whereas the solid blue curve corresponds to the classic linear
kinematic controller.

still noisy, which reflects on the calculated error.

Metric Nonlinear
Controller

Linear Controller

√∫∞
0 ‖uf (t)‖2

2 dt 4.8729 9.2067

Table 5.1: Control Effort. Comparison of the control effort for all controllers

5.2.3 Joints’ Constraints

Two experiments were performed in order to assess the efficiency of the modified Jacobian

Clamping. The first one was done in simulation in Matlab, to verify the effects of joint’s

blockage in the convergence to poses that both violate and do not violate the joints’

constraints, and the second one was performed in the real platform.

5.2.3.1 Simulations

Unless one desires that the mobile base remain restrict to a specified location, joint

constraints apply only to the robotic arm. Therefore, the simulation was done, without any

loss of generality, using only the manipulator. The implementation was done on Matlab

2016a with the computational library DQ Robotics.
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Figure 5.6: Euclidean norm the end-effector pose error (‖vec8 (1− x̃)‖). The red dot-dashed
curve corresponds to the nonlinear controller whereas the solid blue curve corresponds to
the classic linear kinematic controller.

0 500 1000
Iterations

-0.4

-0.3

-0.2

-0.1

0

0.1

ẋ
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Figure 5.7: Control inputs (joints velocities). The red dot-dashed curve corresponds to the
nonlinear controller whereas the solid blue curve corresponds to the classic linear kinematic
controller.
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This technique was applied to the nonlinear controller. The desired end-effector pose

was intentionally selected to be unfeasible without violating the joints’ constraints. To

evaluate the effects of this strategy when the desired pose is actually feasible within the

joints’ limits, the robot was ordered to go back to the initial pose as soon as it converged

to the desired one. The robot’s initial pose was given by x0 = r0 + ε(1/2)p0r0, with

p0 = ı̂0.17 + k̂0.34 and r0 = cos(3π/2) − k̂ sin(3π/2) and the desired pose was given by

xd = rd + ε(1/2)pdrd, with pd = ı̂0.08 + ̂0.07 + k̂0.33 and rd = cos(1.4π)−nd sin(1.4π),
with nd = ı̂0.61− ̂0.11− k̂0.78, as shown in Fig. 5.8. The robot’s joint angles were limited

at θimax = π/2 and θimin
= −π/2. The controller’s gains are given by kv = 2, k̄p = 3. The

stop condition consisted of 200 consecutive iterations in which the error norm was smaller

than 10−5.

Fig. 5.9 shows the time response for all coefficients corresponding to the dual quaternion

end-effector pose. As expected, since the robot end-effector is unable to reach the desired

pose without violating the joints’ limits, it converged to the closest pose possible, in the

sense of least squares2 (greyish area of the graph). However, when the desired end-effector

pose is changed to be its initial pose and this pose is feasible, the robot asymptotically

converges to it.

Fig. 5.10 shows the time response for the angles of the robot’s joints. Without the use

of Jacobian Clamping, the robot violates the joints’ limits and converge to the desired

pose, whereas when Jacobian Clamping is used the joints angles remain within its limits.

It is worth noticing that, once blocked, the joints do not remain in this state for all the

rest of the simulation, allowing the robot to regain the missing degree of freedom and

properly converge to the initial pose.

5.2.3.2 Experiments in the Real Robot

The robot’s motors are not very strong and depending on the robot’s configuration they

stop working, due to excess of torque needed to compensate the gravity. In this experiment,

the modified Jacobian Clamping was used to limit the joints’ angles (specially of the

second and third joints) to avoid configurations that excessively force the robot’s motors.

Two tests were performed, the first one without the usage of the modified Jacobian

Clamping and the second one using it. For the second test, the robot’s joint angles were

limited with

qmax =
[
π −3π/8 π/2 π/2 3π/4

]T
,

qmin =
[
−π −3π/4 π/4 −π/2 −π/2

]T
.

2Note that when no joint is violated, H = I, where I is the identity matrix. This results in
H (JH)† = J†. As J† provides the least squares solution, H (JH)† also provides the least squares
solution.
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(a) Initial robot configuration.

(b) Desired robot configuration. This configuration is unfeasible without violating the
joints’ constraints.

(c) Final robot configuration. As the desired end-effector pose is unreachable within the
joints’ constraints, the robot converges to the closest pose possible, in the sense of least
squares.

Figure 5.8: Snapshots from the simulation of the Jacobian Clamping in Matlab.
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Figure 5.9: Coefficients of the dual quaternion corresponding to the end-effector pose. The
greyish area of the graph indicates the phase in which the robot is trying to converge
to a pose that is unreachable without violating the joints’ limits. The solid black curve
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Clamping.

qm qm (Jacobian Clamping)Joints’ limits

0 1000 2000 3000
Iterations

-2

-1

0

1

2

θ 5
(r
a
d
)

0 1000 2000 3000
Iterations

-2

-1

0

1

2

θ 1
(r
a
d
)

0 1000 2000 3000
Iterations

-2

-1

0

1

2

θ 2
(r
a
d
)

0 1000 2000 3000
Iterations

-2

-1

0

1

2

θ 3
(r
a
d
)

0 1000 2000 3000
Iterations

-2

-1

0

1

2

θ 4
(r
a
d
)

Figure 5.10: Joint angles. The solid black curve correspond to the joints’ limits. The
red dot-dashed curve corresponds to the nonlinear controller without the use of Jacobian
Clamping whereas the dashed blue curve corresponds to the nonlinear controller with the
use of Jacobian Clamping.
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Fig 5.11 shows snapshots from the experiment. For the test in which the modified

Jacobian Clamping was not used, the motor from the third joint stopped working and, as

a consequence, the robot was incapable of reaching the desired end-effector pose. However,

when the proposed strategy to deal with joints’ constraints is used, no motor is excessively

forced and the robot is capable of converging to the desired end-effector pose.

Fig. 5.12 shows the time response for all coefficients of the dual quaternion that

corresponds to the end-effector pose. As it can be noticed, in the test in which the modified

Jacobian Clamping was not used, the robot is unable to converge to the desired end-effector

pose, as a motor stopped working due to overheating.

Fig. 5.13 shows the time response for the angles of the robot’s joints. It can be noticed

that the modified Jacobian Clamping properly keeps the angles withing the desired limits

whereas when this strategy is not used, some joints violate the limits and excessively stress

the motors.

5.3 Chapter Conclusions

This chapter presented the experiments performed to assess the performance of the proposed

control strategy. Section 5.1 presented the experimental setup used in this work, including

a description of the external sensors used and the objects that the robot had to interact

with. Section 5.2.1 showed the effects of the nonlinear controller’s gains in its behavior,

revealing that k̄p affects its convergence rate whereas kv attenuates its oscillatory behavior.

Section 5.2.2 presented the results obtained from the performed experiments, showing

that the proposed control scheme is smother than the classic kinematic approach, while

presenting smaller control effort and similar convergence rate. Section 5.2.3 presented the

use of the proposed modification to the Jacobian Clamping to deal with joint constraints.

Such technique does not affect the controller’s convergence to a feasible pose and is able

to ensure that, in the case that the pose is unreachable without violating the joints’

constraints, the robot will converge to the nearest pose possible, in the sense of least

squares.
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(a) The robot starts in the same configuration.

(b) In this intermediate snapshot the robot (left) that does not uses the modified Jacobian Clamping
already violated its joints’ limits and the robotic manipulator is almost fully extended.

(c) In this final snapshot the motor from the third joint of the robot that does not uses the modified
Jacobian Clamping stopped working due to the excess of torque. As a consequence, the robot is unable
to converge to the desired end-effector pose, whereas the robot using the modified Jacobian Clamping
(right) does not excessively force any motors and is able to properly stabilize the end-effector pose at
the desired location.

Figure 5.11: Snapshots from the experiments, where the executed trajectories from both
controllers are presented side by side. The images on the left show the motion generated
by the nonlinear controller without the usage of the modified Jacobian Clamping and the
images on the right show the motion generated by the nonlinear controller with modified
Jacobian Clamping.
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Figure 5.12: Coefficients of the dual quaternion corresponding to the end-effector pose.
The vertical dashed black line indicates the moment in which the motor stopped working
and the experiment was interrupted. The solid black curve correspond to the desired
pose of the nonlinear controller. The red dot-dashed curve corresponds to the nonlinear
controller without the use of Jacobian Clamping whereas the dashed blue curve corresponds
to the nonlinear controller with the use of Jacobian Clamping.
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Figure 5.13: Joint angles. The solid black curve correspond to the joints’ limits. The
vertical dashed black line indicates the moment in which the motor stopped working and
the experiment was interrupted. The red dot-dashed curve corresponds to the nonlinear
controller without the use of Jacobian Clamping whereas the dashed blue curve corresponds
to the nonlinear controller with the use of Jacobian Clamping.



6
Conclusion and Future Works

This master thesis presented a whole-body control strategy using feedback linearization

and dual quaternion algebra, and applied the resultant technique to the motion control

of a nonholonomic mobile manipulator. The nonlinear controller was adapted from the

one proposed by Wang and Yu (2013) in order to use only the robot kinematics, therefore

the resultant technique can be applied to velocity-actuated robots. The nonlinear pose

controller was implemented in a nonholonomic mobile manipulator, which was modeling

using the systematic procedure proposed by Adorno (2011). To deal with the nonholonomic

constraints of the mobile base, the unfeasible input signals from the controller were

remapped into feasible ones. Since the nonlinear controller acts as a dynamic trajectory

generator, the robot movements are smoother compared to the ones generated by classic

linear kinematic controllers.

The applicability of the proposed whole-body nonlinear controller was demonstrated

by means of experimental results on a mobile manipulator composed of a five-DOF

manipulator serially coupled to a nonholonomic mobile robot. The performance of the

nonlinear controller was compared to the performance of a classic linear kinematic controller,

showing that both have similar convergence rate but the nonlinear controller generates

smoother movements while having smaller control effort. However, it is harder to tune the

nonlinear controller’s gains when compared to the classic controller, because the former

has two parameters that influence each other whereas the latter has just one parameter

directly related to the convergence rate.

Although the end-effector closed-loop dynamics is asymptotically stable, the whole-

48
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body asymptotic stability can be guaranteed only if the signal generated by the nonlinear

controller lies in the range space of the whole-body Jacobian matrix. For the tracking

problem this can be ensured by carefully generating a trajectory that belongs to the

range space of the whole-body Jacobian matrix. However, this is not guaranteed for

the regulation problem and future works will address this limitation. Furthermore, the

controller design is done considering continuous time, whereas the implementation on

the real robot is done in discrete time. The effects of such discretization will also be

investigated in future works. Finally, although a modification in the Jacobian Clamping

was proposed to deal with joints’ constraints, alternatives to deal with joints’ limits, as

well as other hard constraints, will be explored in further works.
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